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Standard Young tableaux and weight multiplicities of the 
classical Lie groups 

Ronald C King and Nahid G I El-Sharkaway 
Faculty of Mathematical Studies, University of Southampton, Southampton SO9 5NH, UK 

Received 3 February 1983 

Abstract. By examining the branching rules for all irreducible representations of the 
classicalgroupsU(&),SU(&),S0(2& + l) ,Sp(2k)andS0(2k)onrestriction toU(1)  x U ( 1 ) x  
. . . x U(1), standard Young tableaux are specified for each of these groups. It is shown 
that these tableaux determine the corresponding characters of the irreducible representa- 
tions. The rules for constructing these tableaux are derived and in this way the determina- 
tion of weight multiplicities is reduced to a simple combinatorial exercise. General 
formulae for such weight multiplicities are given encompassing the most difficult case: 
namely that of SO(2k).  Illustrative examples are provided, including some yielding the 
explicit &-dependence of weight multiplicities. 

1. Introduction 

Recently Stanley (1980), motivated by the work of Patera and Sharp (1979), demon- 
strated that the standard Young tableaux of SU(k)  have an important role to play in 
determining the character generator of this group. It has also been known for some 
time (Delaney and Gruber 1969) that such Young tableaux provide a convenient 
method of determining the weight vectors of a given irreducible representation of 
SU(k) and the corresponding weight multiplicities. 

Surprisingly, much less is known about the generalisation of these ideas to the 
other classical groups U ( k ) ,  SO(2k + l ) ,  Sp(2k) and SO(2k). The closest approach 
to the development of standard Young tableaux for these groups came through the 
work of Gilmore (1970a, b). However, this work did not give all the rules necessary 
for the construction of such tableaux. It also failed to cover the case of mixed tensor 
representations of U ( k )  and did not deal satisfactorily with those pairs of irreducible 
representations of SO(2k) arising from the restriction of a single irreducible representa- 
tion of O(2k).  

This latter problem was also avoided in the most complete analysis of weight 
multiplicities of the classical groups which is currently available (King and Plunkett 
1976). It was only overcome very recently by Wybourne (1982) through the use of 
difference characters. 

Despite this success, achieved without using, either explicitly or implicitly, any 
standard Young tableaux other than those associated with SU(k) ,  it will be demon- 
strated here that the generalisation of these tableaux to the other classical groups 
serves to overcome all the problems of evaluating weight multiplicities, including those 
associated with SO(2k). Moreover such tableaux have been shown elsewhere (King 
1981, King and El-Sharkaway 1982) to provide a convenient way of determining the 
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character generators of Sp(2k), SO(2k) and SO(2k + l ) ,  thus generalising the work 
of Stanley (1980) on SU(k). 

In an earlier paper (King 1975b) the basic ideas were formulated and carried 
through for U(k) and Sp(2k) but only in outline for O(2k)  and O(2k + I), and not at 
all for SO(2k). The present paper is intended to remedy the deficiencies of omission 
in this earlier note. 

2. Characters of irreducible representations 

The character of each irreducible representation A G  of a semi-simple Lie group G 
may be expressed in the form 

where 4G = (q51, q 5 2 , .  . . , q5k) is a vector whose k real components parametrise the 
conjugacy classes of G, w is a weight vector and M^,G is the multiplicity of w in the 
representation AG.  

The characters of all the inequivalent irreducible representations of the classical 
unitary, orthogonal and symplectic groups may be specified by (Black et a1 1983) 

( 6 ;  A }  with p + q  s k  

{A} with p s k - 1 

for U(k)  

for SU(k) 

[ A ]  and [A; A ]  with p S k 

(A)wi thpSk  

for SO(2k + I )  

for Sp(2k) 

[ A ]  with p s k - 1, [A], with p = k ,  and [A; A], withp s k 

for all distinct partitions A = (A1 ,  A z ,  . . . , A p )  and p = ( p l ,  p2, . . . , p q )  having p and q 
non-vanishing parts, respectively. The corresponding highest weight vectors are given 
in table 1. 

In the case of SO(2k) (King et a1 1981) the following linear combinations of 
characters of irreducible representations are required: 

[A 1 = [A It +[A 1- with p = k ( 2 . 2 ~ )  

[A;A]=[A;A]++[A;A]- and[A;A]”=[A;A]+-[A;A]- w i t h p c k  (2.26) 

for SO(2k) 

and [A ] = [A ]+ - [A 1- 

Table 1. Highest weight vectors A of irreducible representations A G  of the classical 
groups G. 
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and it is convenient to introduce 

[U; A 3 =[U; A ] +  +[U; AI- and [U; A]”= [U; A I+ -[El; A]- with p s k ( 2 . 2 c )  

where 0; A denotes the k-part partition ( A l  + 1, A Z +  1, . . . , A, + 1, 1, 1, . . . , 1). 

labelled by & take the form 
Elements of each of the classical groups G which belong to the conjugacy class 

e-i42 

cos& -sin& 
sindk cosq5k 

1 

for SO(2k  + 1) 

for Sp ( 2 k )  

With this notation the explicit dependence of the characters ~ ” “ ( 4 ~ )  upon 4 k  may 
be found through a consideration of the branching rules appropriate to the group- 



3156 R C King and N G I El-Sharkaway 

subgroup restrictions: 

U(k)JU(k - 1) X U(1) 

SU(k)J(U(k - 1) XU(l))/U(1) 
SO(2k + l )JS0(2k)JS0(2k - 2) x SO(2) = SO(2k - 2) x U(1) 

Sp(2k)JSp(2k - 2) x Sp(2)JSp(2k - 2) x U ( l )  

S0(2k)JS0(2k - 2) x SO(2) SO(2k - 2) x U(1). 

In the second of these the factoring out of U ( l )  is necessitated by the constraint 
# J ~  + 42 + . . . + 4 k  = 0.  For this reason it is preferable to identify the characters {A} of 
SU(k) with the corresponding characters {A} = {o; A }  of U(k)  subject to this constraint, 
and to work with the group-subgroup restriction U(k)JU(k - 1) x U(1). 

If this is done then all the group-subgroup restrictions are of the form G J H  x U(1) 
and yield: 

where +G = (41~42, .  . ,4k- i ,  4 k )  and 4~ = (41~42, .  . . ,4k-i), whilst VH and {Wk} 
label irreducible representations of H and U( 1) respectively. Moreover 

X(Wk’(4k)  = exp(iwk4k) (2.4) 
so that a knowledge of the branching rule coefficients Bk{wkl  is then sufficient to 
determine the dependence of ~ ~ “ ( 4 ~ )  on 4 k .  Moreover, iterating these branching 
rules with k replaced by k - 1, k -2 , .  . . , 2 ,  1 will lead to an expression for xAG(&) 
of the required form (2.1). 

3. Branching rules and modification rules 

The relevant branching rules may be derived in a variety of ways, but the use of Schur 
function methods (King 1975a, King et a1 1981) provides a common framework in 
which to deal with them all. The required results are summarised in table 2. The 
notation is such that x, y and z are one-part partitions, whilst / and signify Schur 
function quotients and products, both operations being governed by the Littlewood- 
Richardson rule (Littlewood 1940, p 94). 

These results conform with the branching rules given by Weyl (1931, p 391) 
for U(k ) JU(k- l ) ,  by Boerner (1970, pp 267, 269) for S 0 ( 2 k + l ) J S 0 ( 2 k j  and 
S0(2k)JS0(2k - 11, and by Miller (1966) and Hegerfeldt (1967)for Sp(2k)JSp(2k - 2). 
The additional feature included here is the explicit dependence upon the characters 
of U( 1) which is crucial to our development. The origin of this dependence goes back 
to the special case of the branching rule (Whippman 1965, King 1975a) 

(3.1) 

for which p = k - 1 and q = 1. In this special case the summation over 5 is confined 
to the one-part partition 5 = x, as indicated in table 2. The corresponding U(1) 
character is {x} = exp(ix4k). Although expressed somewhat differently, this result for 
the branching from U(&) to U(k - 1) x U(1) seems to have first been made explicit by 
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Zhelobenko (1962) and to have first been used to determine weight multiplicities by 
Gilmore (1970a). 

The result tabulated for Sp(2k)JSp(2k - 2) x U ( l )  was also given first by 
Zhelobenko (1962) and subsequently used by Gilmore (1970a). It may be derived 
most easily through a consideration of the chain 

Sp(2k)TU(2k)S(2k-1) xU(l)SU(2k-2)  x U(1) x U(I)JSp(2k -2) x U( 1). (3.2) 

Making use of certain infinite series of Schur functions (Littlewood 1940, p 238, King 
1975a) this yields the result 

(3 .3)  

as given in table 2. It should be pointed out that the first of the U(1) groups is 
associated with exp(i&) and the second with exp(-i&). This is the origin of the 
distinction between {x} = exp(ixq5k) and {y} = exp(-iy&) whose product yields {x - 
y} = exp i(x - Y I&. 

This derivation may be adapted to deal with the characters of SO(2k) through a 
consideration of the chain 

S0(2k)fU(2k)SU(2k - 1) x U(l)JU(2k -2) x U(1) x U(l)SS0(2k -2) x U(1). (3.4) 
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This yields 

(3.5) 

To complete the results it is only necessary to note the particular branching rules 

S 0 ( 2 k ) J S 0 ( 2 k  - 2) x SO(2) = SO(2k - 2) x U(1) 

ALA x A = A x ({i} + {i}) 
A“JA” x A“ = A x ({i} - {i}) 

and 
0” =A A’’JA. A’f x A .  A ” = n ” x O ”  = o ” x  ({1}-{i}) 

and to use the identities (King et a1 1981): 

SO(2k) [A; A ]  = A * [A/P] A.[AI=[A;AlQI 

[A; A ] ” =  A 4 [A/M] 

[a; A ] ’ ‘ = O ”  * [A/&’] 0” [A]=[O; A/V]” 

A” * [ A ] =  [A; A/L]” 

along with 

A B  = CD = PQ = LM = WV = 1 

This technique was outlined elsewhere (King 1982) but has now been made completely 
explicit by Black and Wybourne (1983) to cover the case of all irreducible representa- 
tions of SO(2k) branching under the restriction to SO(2k - 2) x U(1). 

In applying the branching rules of table 2 it should be stressed that certain 
non-standard labels uH of irreducible representations of H may arise. These may be 
dealt with by using the modification rules of table 3. These are the appropriate special 
cases of the complete set of such modification rules described elsewhere (King 1971, 
1975a, King et a1 1981, Wybourne 1982). They are nothing other than identities 
between characters specified by standard and non-standard labels. They extend the 
modification rules given by Murnaghan (1938, p 282) and Newel1 (1951) which were 

Table 3. Modification rules. 
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used in precisely this same context by Gilmore (1970a). The extension referred to 
takes in both the characters [A, a]” and [a; a]” of SO(2k -2). The use of difference 
characters serves to fill the gap left by Gilmore (1970a, b) in dealing so successfully 
with all cases other than the characters of the irreducible representations [U; A], of 
SO(2k). 

4. Enumeration using Young diagrams 

The enumeration of the terms arising through the use of the branching rules of the 
preceding section may conveniently be accomplished by making use of Young diagrams 
or frames. 

Each partition A = (Al, A 2 ,  . . . , A,) with A 1  2 A 2  5. . . Z  A, >O,  A I  + A 2  +. . . +A, = I 
and A i  an integer for i = 1,2,  . . . , p serves to specify a Young diagram, F A ,  consisting 
of 1 boxes arranged in p rows of length A I ,  A 2 ,  . . . , A,, left-adjusted to a vertical line. 
For example 

U 
Such Young diagrams may be generalised in several ways. Firstly (Abramsky and 

King 1970, King 1970) the label @ ; A ,  used in the description of mixed tensor 
representations of U(k), specifies a Young diagram FCiA. This is formed by placing 
the Young diagrams F” and F A  back-to-back in such a way that the boxes in the rows 
of F” and F A  are right-adjusted and left-adjusted, respectively, to the same vertical 
line. The boxes of F’” are distinguished from those of F A  by being dotted. Thus for 
example 

Secondly the label A;A, used in the description of spinor representations of 
SO(2k + 1) and S0(2k) ,  may be used to specify a Young diagram F A i A  consisting of 
a column of half boxes of length k adjoined to the left-hand side of FA. This differs 
only marginally from the diagrammatic notation introduced by Gilmore (1970b). Here 
for example if k = 5 

Similarly for consistency the Young diagram, FDiA, is formed by adjoining a column 
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of boxes of length k to the left-hand side of FA.  This yields a conventional Young 
diagram of course. For example if k = 4 

p ; 4 2 )  = ~ ( 5 3 1 ~ ) .  

Each Young diagram may be numbered in a variety of ways by inserting entries 
into the boxes or half boxes of the diagram. Such numberings may be generated by 
a consideration of the branching rules of table 2. 

The key operation in the branching rules is that of Schur function division. This 
operation is governed by the Littlewood-Richardson rule (Littlewood 1940, p 94). 
In the special case required here this implies that 

A l x  = E a  
U 

where the summation is over all partitions (T such that F“ may be obtained from F A  
by the removal of x boxes, with no more than one box removed from any one column. 
If A and U are partitions of I and s respectively then s = 1 -x .  It is convenient here 
to keep account of the x removed boxes by inserting in each of them a numerical 
entry (in contrast to the literal entry used by Littlewood). 

To be precise in dealing with the branching rules of table 2 each box, or dotted 
box, removed from F A ,  F K Z A ,  FAiA and FniA through division by x, y or z should be 
replaced by an entry k ,  or 0 respectively. The x entries k ,  y entries E or z entries 
0 are to be associated with the U( 1) characters { x } ,  {f} or {0} respectively. 

Similarly each half box removed from the first columns of FAZA in branching from 
[A; A ]  or [A; AI,, of SO(2k) to [A; a ]  or [A; (+I,, of SO(2k -2) should be replaced by 
a half entry k or k; to be associated with the U(1) characters {i} or {i}, respectively. 
Finally each box removed from the first column of in branching from [O;A]” 
of SO(2k)to [U; (TI” of SO(2k-2)  should be replaced by an entry k or k; to be 
associated with the U( 1) characters { 1) or {I} respectively. 

It is clear that in this way the entries k and E provide a very convenient way of 
determining the U(1) character to be associated with each term UH arising from hc 
under the restriction of G to H x U(1). 

The only difficulty is that occasioned by the need to use modification rules. These 
rules are given in table 3 and must be used to standardise the representation labels 
for H. 

The modification rules for U(k - 1) are such that the only contributions to the 
character {A} of U(k) are those enumerated by making entries k in the boxes of F A  
in such a way that if p = k then each and every box of the kth row contains k. 

Similarly the only contributions to the character {p ; A }  of U(k)  are those enumer- 
ated by making entries k in the boxes of F’”A and entries 6 in the dotted boxes of 

in such a way that if p + q  = k then either each and every box of the pth row 
contains k if any dotted box of the qth row is unfilled, or each and every dotted box 
of the qth row contains E if any box of the pth row is unfilled. 

In the case of the restriction from Sp(2k) to Sp(2k -2)xU(1)  the only non- 
vanishing contributions to (A } are those enumerated by entering k or into the boxes 
of F A  in such a way that if p = k then each and every box of the kth row contains 
either k or E. 

Modification rules are not required in restricting from SO(2k + 1) to S0(2k) ,  but 
they are most certainly required in dealing with the most complicated case: that of 
restricting from SO(2k) to SO(2k -2) XU(1). In the case of the characters [ A ]  with 

F E : : “  
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II 

p < k there is no problem, of course, since the modification rules are not called into 
play. It is convenient to treat the remaining characters [A]+ with p = k and [A; A]* 
with p s k by considering both reducible and difference characters defined by (2.2). 

All contributions to the difference character [U; AI,, of SO(2k) are excluded by 
the modification rules for SO(2k -2), except for those enumerated by entering k or 
E into the boxes of FDiA in such a way that if p = k then each and every box of the 
kth row contains either k or k: Moreover, pairs of terms corresponding to the diagrams 

iJ 

1 t I  I / 

I 

I I  I 

b t  

k 

/ 
/ 

/ E l c . . . E  . . .  / 
I 

1 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

I k . .  Lkk . . .  k l k k  . . .  k ]  

E . .  .Ekk .  . k  

fr - f v - - - f x -  

/ EE..L . . .  / 
/ 

/ 

k k .  . k  

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

Elc...L . . .  / 
/ 

I I  I I 
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4 

DF’A = k 

t 

and 

1 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ F FL . . .  F . . .  / 
/ 

k kk . . .  k 

--g, -gx - g z  - 
cancel if g, = f x  - 1 2 0 ,  g, =fy - 1 2 0  and g, =f, 3 0  since in such a case both DFiA 
and DFiA are associated with the same U( l )  character {x -y} and the modification 
rule introduces a negative sign in deleting the two unfilled boxes of DFiA. It follows 
that the only uncancelled terms are those of type with either f x  = 0 and f, 2 1, 
or f, = 0 and f, s 1, or f x  = 0 and f, = 0. In the first two cases these diagrams coincide 
with those of type DFiA with g, = 0 or DFiA with fy = 0 respectively. In the third case 
a term associated with precisely the same U(1) character {x - y} arises after 
modification of the diagram 

I 
I t I  / 

/ 
/ I I  I 

I 
I 

/ 
/ 

/ 
/ 

/ 
/ k / 

/ 
/ 

/ EL. . . . F . . . / 
/ 

kk.. . . k 

/ 
/ 

/ 
/ 

/ 
/ 

- hz- 

with h, = fi - 1 2 0 ,  through the deletion of the two unfilled boxes at the foot of the 
first column. This modification is equivalent to replacing OFiA by 

which is identical to DFiA with f x  =f, = 0. 
Finally, turning to the spin characters [A; A ]  and [A; A]”of S0(2k) ,  the modification 

rules imply that in both cases only 0 or 1 boxes may be left unfilled in the kth row 
of FA:*. 
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/ KIF . . .  F . . .  / /  
I 

kk . . . k 

There are thus four types of diagram to consider: 

CIF... F 
kk  . . . k I%. . l k k  . . . k 

D A : A  - 
1 -  

/ . . .  / 

: I  /’ 

A m . . .  
/ 

/ 
/ 

EL.. . L k k . .  k 1 k k . .  k 

- f ,  - f x - f 2 -  

-h, - h,  - h2 - 

-i,.- i, - i, - 
In the case of the reducible character [A; A ]  of S O ( 2 k )  the modification rule, incor- 
porating as it does a negative sign, produces a cancellation between terms correspond- 
ing to the diagrams D t i A  and D:’A if i, = f x  S O ,  i, = f ,  - 1 3 0  and i, = fi 3 0  and a 
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cancellation between terms corresponding to D t i A  and D t i A  if h, = g, - 1 3 0, h, = g, 2, 
0 and h, = g, 3 0. Thus the only uncancelled contributions arise from D t i A  with f, = 0 
and from D$'A with g, = 0. Similar cancellations take place in the case of contributions 
to the difference character [A; AI,, of SO(2k). The only change is that the negative 
sign producing the cancellation comes not from the modification rule but from the 
U(1) character -{x - y - $} rather than +{x - y + $}. Thus the uncancelled contributions 
from D t ' A  and D$'A are positive and negative respectively. They involve diagrams 
in which each of the boxes in the kth row to the left of any E pairs is filled with k 
or E according as the half box at the foot of the first column is filled with k or k; 
respectively. 

This completes the task of describing a combinatorial algorithm based on Young 
diagrams for enumerating all the terms arising as a result of using the branching rules 
of table 3 .  

5. Standard Young tableaux 

The enumeration procedure described in 0 4 involves inserting entries k, and 0 into 
certain of the boxes, dotted boxes and half boxes of various Young diagrams F A ,  FGiA 
and FAiA. The unfilled boxes, dotted boxes and half boxes constitute - Young diagrams 
FU, F';U and FA:". Repeating the procedure using entries k - 1 and k - 1, then again 
using k - 2 and k - 2, and so on until finally using the entries 1 and i, leads to the 
construction of various arrays T A ,  T C t A  and TA'* known as standard Young tableaux. 
These are arrays in which every box, dotted box and half box is filled by some entry. 

The entries in these standard Young tableaux are taken from one or more of the 
sets 

- 

SI, ={l, 2 , .  . . , k} sE={i,2, ..J} and S o  = {0} 

and the distribution of the entries in the tableaux is governed by various combinations 
of rules RI, RZ, . . . , R8. With respect to the total ordering 

T < 1 < 2 < 2 < . . . < C c k < O  (5.1) 

these rules take the form: 
RI :  the entries in boxes are non-decreasing from left to right across each row; 
RZ: the entries in dotted boxes are non-decreasing from right to left across each row; 
R 3 :  the entries in boxes and in dotted boxes are strictly increasing from top to 

R4: if the lowest rows containing entries i and T are r ( i )  and r ( r )  respectively 

R5: if the lowest rows containing entries i and T are r ( i )  and r(7) respectively 

R6:  if the lowest row containing an entry 0 is r(0) then r(0) s k ; 
R7: the entry in the half box of the ith row is either i or for i = 1, 2 , .  . . , k ;  
R8: no entry i may appear to the right of an entry in the ith row unless it also 

lies immediately below an entry for i = 1, 2, . . . , k. 
The subset of rules appropriate to a particular set of standard Young tableaux 

depends not only upon the type of tableaux T A ,  T G i A  or TA'A but also upon the group 
under consideration. It is convenient to denote the standard Young tableaux of type 
T A  by AA, BA,  CA or D A  for SU(k), SO(2k + l), Sp(2k) or SO(2k) respectively, those 

bottom down each column; 

then r ( i )+ r (T)< i  fo r i  = 1, 2 , .  . . , k ;  

then r ( i ) s i  and r(T)<i  fo r i  = 1, 2 , .  . . , k ;  
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of type T”:” by U”:” for U(k), and those of type TA’:” by BA’:” or DA’:” for SO(2k + 1) 
or SO(2k) respectively. With this notation the relevant set of rules for each of the 
classical groups is specified in table 4. 

Table 4. Rules governing the entries in standard Young tableaux. 

Group Tableau Entries Rules 

1 ,  2, 3 , .  . . , k in F A  
1 , 2 , .  . . i in F” 

u l i  . A  

- -  

In the case k = 5 the various sets of standard Young tableaux are exemplified by: 

u(v:31) 3 i 3 5 5  
2 5  
5 

1 3 3 5 5  
2 4 5  
4 
5 

3 3 0  2 1 2 4 0  

~ ( 5 3 1 2 )  

i l Z Z 5  (Ai3211 i 2 3 0 0  

5 3 1 0  
0 4 1  

5 1  

B(5312) 

- 
1 1 2 2 4  
2 2 3  

~ ( 5 3 1 ~ )  

4 
4 

where the symbol / separates entries in half boxes from those in boxes and, for 
typographical convenience, the boxes themselves have not been drawn. 

In dealing with the groups SO(2k + 1) and SO(2k)  it is necessary to introduce 
some further notational devices. 

The entries in the first column of boxes of T A  or the column of half boxes of TA;* 
constitute a vector I = (f,, 1 2 ,  . . . , l k ) ,  where li is the leading entry in the ith row of T A  
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or TAiA for i = 1, 2 , .  . . , k. In the case of T A  with A such that p < k it is to be 
understood that l i  = 0 for i = p + 1, p + 2, . . . , k. It is then convenient to define a 
signature vector, E = ( E ~ ,  E ~ ,  . . . , ~ k ) ,  associated with each standard Young tableau 
T A  or TAiA such that 

1 i f l i = l a n d  l i - l # T  

if li = T 
if li = i and l i - 1  = i 
i f I i # i  or T 

- Ei  = (5.2) 

for i = 1, 2 , .  , . , k. The signature, E, of each standard Young tableau T A  or TAiA is 
in turn defined by 

k 
E = n E i .  (5.3) 

i = l  

The rule R7 is such that for each standard Young tableau TA;" the signature vector 
E is unique. This is not the case for each standard Young tableau T A  although the 
signature itself, E ,  is unique. In general the number of distinct signature vectors E 

associated with each standard Young tableau T A  is 2', where the duplication parameter 
/3 is defined by 

k 

I = 2  
P =  c &,.i6, ,_ , ,  ;. (5.4) 

Thus P is the number of pairs of leading entries 
(i - 1)th and ith rows, respectively, of T A .  

and i in the first boxes of the 

6. Weight multiplicities 

Just as the Young diagrams of $ 4  provide a means of enumerating all the terms 
arising from each irreducible representation A G  on restriction from each classical group 
G to a subgroup H x U(1), so the standard Young tableaux of 3: 5 provide a means 
of enumerating all the terms arising on restriction from G to U(1) x U ( l )  x , , , x U(1). 
This is a consequence of their construction being determined by the branching and 
modification rules appropriate to the group-subgroup chains: 

(6.1) 

XU( l )XU( l ) J . .  . J U ( l ) x U ( l ) x . .  . x U ( l )  (6.2) 

(6.3) 

(6.4) 
Each standard Young tableau determines a unique weight vector w = 

(6.5) 

U(k)JU(k - l ) x U ( l ) J U ( k  - 2 ) x U ( l ) x U ( l ) J .  . .  J U ( l ) x U ( I ) x . .  . x U ( I )  

SO(2k + l ) JS0(2k)JS0(2k  - 2) x U( 1)JS0(2k -4)  

Sp(2k)JSp(2k -2)xU(l)JSp(2k - 4 ) x U ( I ) x U ( 1 ) J . .  . J U ( I ) X U ( I ) X .  , , x U ( I )  

S0(2k)JS0(2k -2 )xU( l ) JS0(2k  - 4 ) x U ( l ) x U ( I ) J . .  . J U ( ~ ) X U ( I ) X . .  , x U ( I ) .  

(w1, w 2 , .  . . , w k )  such that 

w, = n , - n ;  for i = 1,2 ,  . . . , k 
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where ni is the sum of half the number of entries i in half boxes and the number of 
entries i in boxes of the tableau, whilst ny is the same quantity defined for T rather 
than i. The entries 0 make no contribution to w .  

For example, in the case of the standard Young tableaux displayed in 9: 5 the 
corresponding weight vectors w are given by 

where, of course, w, = ii implies w, = -n. 
The use of the terminology 'weight vector' for w is justified by the fact that if a 

standard Young tableau TAG associated with an irreducible representation A G  has 
weight vector w then the restriction of A G  from G to U( 1) x U( 1) x . . . x U( 1) gives 
rise to at least one term of the form {wl} x { w z }  x . . . x {wk}. The ith component w, is 
associated with the character { w l }  = exp(iw,&) of the ith group U(1) for i = 1 , 2 , .  . . , k. 
It follows that 

where the summation is carried out over all the standard Young tableaux T A G  
associated with AG, w is the weight vector of TAG and PG the corresponding duplication 
parameter. 

The problem of evaluating the weight multiplicities A42 of (2.1) is thus reduced 
to little more than that of enumerating the appropriate standard Young tableaux 
whose weight vectors are w. It is only necessary to incorporate the duplication factor 
when dealing with the standard Young tableaux B A  and D A  of S O ( 2 k  + 1) and SO(2k) 
respectively. 

The results are made explicit in table 5 where 

i f t = w  
i f t  # w (6.7) 

and U ,  a, 6,  c and d are the weight vectors of the standard Young tableaux U"A, AA, 
B A  or BA;A, CA, and D A  or D A : A  respectively. 

It should be noted that in the case of S O ( 2 k )  the signature E is needed to determine 
whether D A  contributes to [A; A]+  or [A; A]-  for p s k .  

The duplication factors owe their origin to the du lication of diagrams of the type 

definition (5.4) this factor is 2' for S O ( 2 k  + 1) and is 2'-' for S 0 ( 2 k ) ,  by virtue of 
( 2 . 2 )  which implies that 

(6.84 b)  [A; A ] , = ~ ( [ A ; A ] * [ A ; A ] " )  

The very straightforward manner in which the explicit formulae of table 5 may be 
used to determine weight multiplicities is illustrated by the examples shown in table 6. 

One or two points should be made concerning these results. Firstly there is of 
course a link between both the standard Young tableaux and the weight multiplicities 

De:A 6 arising from both DYiA with f x  = f ,  = 0 and D$, as explained in 9: 3. With the 

[U; A I* = +([U; A 1 * [U; A I"). 
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Table 5. Weight multiplicities. 

forp + q  s k 

forp s k  - 1 

f o r p s k  

f o r p s k  

f o r p s k  

forp < k  - 1 

for p = k 

f o r p s k  

of SU(k)  and U ( k ) .  This comes about because the restriction of the irreducible 
representation { p ;  A }  of U ( k )  to SU(k)  yields the irreducible representation b} for 
which F” is formed from FcA by replacing each column of dotted boxes of F’”’A of 
length Gj by a column of boxes of F” of lengthbj = C;, for j = 1, 2, . . . , p The remaining 
columns of boxes of F” coincide with those of so that bi =ij-@, for j = p l  + 1, 
p + 2, , . , , p + A  (King 1970). In  terms of standard Young tableaux this produces 
a one-to-one correspondence between tableaux T”* and T P  with each column of 
negative entries of T”” replaced by its complement in the set {1 ,2 , .  . . , k } .  Thus as 
indicated in table 6 the columns 

z 3 
3 and 4 
5 5 

correspond to the columns 
a direct consequence of the identities 

and under the restriction from U ( 5 )  to SU(5). This is 

expi(-42-43-45)=expi(41+44) 

expi(-43-44-45) = e x p i ( 4 1 + 4 ~ )  

and 

which follow from the constraint 

e x p i ( 4 1 + 4 z + .  . .+&)= 1 (6.9) 

appropriate to SU(k) ,  with k = 5 .  It is thus no accident that 
M{i3i21j - (32) 

(10111) -M(21020). 
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Table 6. Calculation of weight multiplicities. 

U(5) {iJ; 2 1) (1 o i 1 i) 2 1 2  5 1 4  
3 4  4 4  
5 5 

SU(5) {3 21 (2 1 0 2 0) 1 1 2  1 1 4  
4 4  2 4  

2 

2 

SO(7 [3 21 (0 1 2) 2 2 2  2 2 3  2 3 3  2 3 3  2 3 0  6 
3 3  2 3  3 3  0 0  3 0  

20 1 2 1 1 1 
[A;2 12] (3 2 3 2 1 2)  111 2 111 3 111 2 111 3 111 o s 

213 212 213 212 212 
313 313 510 310 310 

3 3  2 3  3 3  2 3  3 3  

3 3  2 3  3 3  

Sp(6) (3 2) (0  1 2) i i 2  T i 3  2 2 2  2 2 3  2 5 3  s 

SO(6) [3 21 (0 1 2) 2 2 2  2 2 3  2 5 3  4 

20 1 2 1 

1 2  
3 3  

[22 11- 

P2 11, 

[22 11- 

3 

E 0 

2B-1 1 

(1 1 i) 1 2  1 3  1 2  
2 2  2 3  3 5  
5 3 3  

E 1 1 0  

1 

- -  

_ _  28-1 

(1 0 0 )  1 2  1 2  1 5  
2 3  2 3  5 3  
3 3 3  

28-1 - - 1 

E 1 1 0  

(1 0 0 )  1 2  1 2  1 3  
2 3  2 3  3 3  
3 5 3  

E i i o  
28-1 - - 1 

111 2 111 3 
213 212 
313 313 

(3  3 1 k 2  17, 2 2 2) 

[A; 2 12]- ($  $ ij - 

1 

3 

3 

3 
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More generally 

M::*} = M t L  (6.10) 

where the relationship between p and 6 ; A is as given above and c = (p1p1 . . . @I) .  

Secondly, it is well known that each group character x""(G) is invariant under 
the action of the Weyl symmetry group WG. This leads to the symmetry properties 
of weight diagrams which is made precise through the identity 

M'& =,+ftfl for each S E WG. (6.11) 

For the classical groups G the Weyl symmetry groups WG are well known. For both 
U ( k )  and SU(k)  the Weyl symmetry group is the symmetric group Sk of all permutations 
of the components of w .  For both SO(2k + 1) and Sp(2k) the Weyl symmetry group 
is the hyperoctahedral group Q k  of all permutations and independent sign changes of 
the components of w ,  whilst for SO(2k) the Weyl symmetry group is the subgroup 
of Qk involving an even number of sign changes of the components of w (King and 
Al-Qubanchi 1981, Wybourne 1982). 

For each weight w the set of all weights { S w :  S E  WG} is a set of G-equivalent 
weights all possessing the same weight multiplicity in any irreducible representation 
A G  of G. Amongst this set there exists a unique dominant, highest weight w such that 
w is the highest weight of some irreducible representation W G  of G. In calculating 
weight multiplicities it is thus only necessary to determine the dominant weight 
multiplicities M>. It is convenient to adopt the notation of table 1 and (2.2) to 
replace the symbol w by the corresponding irreducible representation label ( w G ) ,  
where round brackets are now used in all cases to indicate that (wG) is really a weight 
label rather than a representation label. Thus in general 

M";; = M:,",: (6.12) 

where W G  has highest weight vector w = S w  for some S in WG. With this relation it 
follows from table 6 that 

In the case of the group SO(2k) there exists an outer automorphism such that 

[A I' = [A 1 
[A; A]: =[A;  A I T  

for p < k,  [A 1: = [A IT forp = k 
for p s k .  

This operation merely changes the sign of the kth component of each weight vector. 
It follows that if A and cr are partitions of 1 and s, respectively, into p and q parts, 
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respectively, then for SO(2k) 
(6.13) 

(6.14) 

(6.15) 

(6.16) 

It follows from the previous results, therefore, that 
M12:lIL = SO(6) M[2211 (13)++ = 3 ( 1  )+ 1 

~ [ A ; 2 1 ~ 1 +  = M[A:2121L 
( A : l 2 1 L  (A;]’]+ = 2 .  

[ A . 2 1 2 ] _  The vanishing of the final weight multiplication M(A;121+ in table 6 is no coincidence. 
Examination of the rules appropriate to the corresponding standard Young tableaux 
shows clearly that in general 

MIA:Al+ ( A ; u ) - , - ) I  - <  = 0 f o r p s k  a n d q s k .  (6.17) 

This leads directly to the result first given by Wybourne (1982): 

(6.18) MIA;Al* [ A A ]  
( A ; u ) * , - ) f - *  = M ( A ; u )  

where use has been made of the notation (2.2), and 

M[A;AI ( A ; o )  = M[A:AI (Aim)+ = M[A;AI ( A ; u ) -  (6.19) 

is the multiplicity of the weight (A; c) in the irreducible representation [A; A ]  of O(2k)  
(King and Plunkett 1976). 

Similarly (6.14) implies that 

M [ ~ I +  (U) = M [ A I -  (0) - -2Ml:j 1 f o r p s k  a n d q < k  (6.20) 

where Mia; is again the multiplicity of the weight (CT) in the irreducible representation 
[ A ]  of O(2k). Unfortunately no such simple result is valid for Mi:;: and Mia;;. Indeed 
our example indicates that M#’ = 4 for the irreducible representation [221] of O(6) 
and that these four weights are unequally distributed between the irreducible rep- 
resentations [2’1]+ and [221]- of SO(6). The enumeration of standard Young tableaux 
provides a means of distributing the weights in accordance with the general result 

(U) (U)* +M(U), (U)+ +Mia;: forp  = q  = k. (6.21) 

Using this technique the dominant weight multiplicities have been calculated for each 
irreducible representation [A]+ of SO(2k) with p = k and 1 s 6. The results are given 
in table 7.  The results may be checked by making use of the k-dependent formulae 
for Mi;; (King and Plunkett 1976) for O(2k) and M~~~ (Wybourne 1982) for SO(2k). 

It is also possible to use the standard Young tableaux to establish explicit k- 
dependent results. For example the standard Young tableaux: 

1 3 4  1 3 i  for 5 s i s k  

Z i  2 4  

i i 

M [ A I  = M I A ] +  [ A I -  = M I A ] *  

- - 

- - 
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3 

3 

3 

3 

3 

3 

3 

- 3 3  

3 

3 "  

C 

3 3  

3 

"",- 

C 3  
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m -  

m m  3 

N -  

3 

m d - r  3 

N N  

N -  

r. 

- 3  

3 

3 N r .  

3 -  

3 

0 r4 

3 

Q\ 

m 

3 

d 

3 

3 

3 

t 
a + 3 LA- 

N 3  
vu  
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imply that for U(k )  with k 5 
M‘2”21, 

(1*;1*) = 2k -8 .  

No contributions arise for i < 5 since such terms are excluded by rule R4. 
Similarly the standard Young tableaux 

1 1 2  1 1 0  1 1 3  
0 0  2 0  2 2  

1 1 2  1 l T  l l i  for 3 ~ i s k  
- 
i i  2 i  2 1 1  

imply that for SO(2k + 1) with k 2 2 

Mi:;; = 3k - 3. 

Excluding the first two from this set and including 

1 1 2  
2 2  

then gives for Sp(2k), with k 3 2, 
~ ( 3 2 )  

(21)  = 3k -4 
whilst just excluding the first two tableaux gives for SO(2k)  with k 3 3 

Mi;;! = 3k - 5 .  

Furthermore the standard Young tableaux 

1 1 1 2 0  1 / 1 0 0  1 1 1 2 2  
2 1 0  2 1 2  7 1 0  

{ I  T /  { I  T I  

k l  k l  k l  k l  

2 / i  2 / T  2 1 2  

k l  k l  k l  

2 / i  2 / i  2 1 2  

1 / 1 2 i  1 / 1 2 i  I / ~ f i  for 3 s i  s k 

1 / 1 2 i  1 / 1 2 j  l l l i j  for 3 S i < j ~ k  
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imply that for SO(2k + 1) with k 3 3 
M[A:311 ( A . 1 2 )  = $ ( 3 k 2 - k - 2 )  

whilst dropping those tableaux with an entry 0 and taking into account the signature 
of the remaining tableaux gives for SO(2k)  with k 3 3  the multiplicities 

MrA.311, M[A.311 
(h.12,- = i ( 3 k 2 - 7 k  + 4 )  ( 5  t*1+ =o.  

Finally the standard Young tableaux 

1 :  for 2 si s k with E = 1 
2 i  

k 

l i  
a i  

for 2 s i < j s k with E = 0 and 2@-' = 1 

i 

k 

where 1 indicates the omission of an entry i, imply that for SO(2k) with k 3 2 

This method of calculating the k-dependence of weight multiplicities was in fact 
used to check the extensive tabulation given earlier (King and Plunkett 1976). The 
new results presented here are those pertaining to S 0 ( 2 k ) ,  rather than to 0 ( 2 k ) ,  for 
which the enumeration technique is an alternative to the procedure of Wybourne 
(1982). 

7. Discussion 

It has been demonstrated that standard Young tableaux, constructed in accordance 
with well defined sets of rules dependent upon the classical group G under consider- 
ation, serve to define weight vectors of each irreducible representation hG, and by 
their enumeration they also determine the weight multiplicities. Furthermore it has 
been shown both that the method applies to the most difficult family of groups S 0 ( 2 k ) ,  
as well as to U(k),  SU(k),  SO(2k + 1) and Sp(2k), and that the method yields explicit 
k-dependent weight multiplicity formulae. 

In addition, however, the standard Young tableaux, along with their distinct 
signature vectors if appropriate, label all the basis states of each irreducible representa- 
tion and it is demonstrated in a subsequent paper that the column structure of such 
tableaux provides a means of writing down generating functions for all irreducible 
characters of the classical groups. 
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Finally it should be pointed out that the standard Young tableaux also serve to 
define various symmetric functions of considerable combinatorial interest. Indeed 
one can simply define 

s " ( x ) = x A ~ ( ~ )  (7.1) 

with xi = exp(ir#q) for j = 1,2,  . . . , k, to obtain symmetric functions of the k-indetermin- 
ates XI, x2, , . . , xk .  These functions are multinomials, possibly involving half integer 
powers, in the indeterminates xl, x 2 , .  . . , Xk and their inverses X l ,  XZ, . . . , i k .  They 
are symmetric in the sense that 

S""(SX) =sAG(n) for each S E  WG (7.2) 

In the case of U(k) with hG ={A} this definition yields the very well known Schur 

(7.3) 

where WG js the Weyl symmetry group of G. 

functions (Littlewood 1940, p 84, Macdonald 1979, p 23) 
( A  \ SA = S  (n). 

For example the standard Young tableaux of U(3) 

1 1  1 2  1 1  1 2  2 2  1 3  1 3  2 3  
2 2 3 3 3 2 3 3 

serve to define 
s(21) = x :x, + x1x; + x :x, + x 1x; + x :x3 + XZX 2 3 + 2x  1XzX3 

which is manifestly symmetric under permutations of XI, x2 and x3. 
In precisely the same way the standard Young tableaux of Sp(4) 

i i  i i  1 1  T i  i i  1 1  
2 z 2 2 2 2 

i Z  i 2  i 2  i 2  1 2  1 2  1 2  1 2  
2 2 z 2 2 2 2 2 

2 2  2 2  
2 2 

serve to define 
S(Z1) = n ; i ,  +x:f2 + i:x2 + x :x2 + i lx: + x, i :  +fix: +XlX2 2 + 2 ( i l +  x 1 +i, + x2). 

Similarly the two subsets of these appropriate to SO(4) 

T i  i 2  i 2  1 1  1 2  1 2  Z Z  2 2  

2 2 2 2 2 2 2 2 

i i  i Z  i 2  1 1  1 2  1 2  Z Z  2 2  
2 2 2 z 2 2 2 2 

srzll+ = f : X *  + x :x, + i1x: + x 1x 2 2 + Xl + x 1 f f z  + x, 

d2"- =X:x2+x: f2+f lX:+Xl f :+f l  + x 1 + f , + x * .  

and 

define 

and 
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Just as the monomial symmetric functions (Macdonald 1979, p 11) 
2 2  2 

m21 = x :x ,  + x 1 x ;  + x : x ,  + x 1 x  3 + x 2 x 3  + x 2 x  3 

and 

m 13 = X 1 X 2 X 3  

provide a convenient homogeneous basis for s 2 1  so 
“ 1 .  = -2  - 2 x 1 x 2  + x : x 2  +i,i: + X l X Z  

mC2”- = i : x 2 + x : ~ 2 + x 1 ~ ~ + ~ 1 x 2  2 

“- - 
and 

- X l + X 1 + i 2 + X 2  

provide a homogeneous basis for s ( ’ l ) ,  s r 2 ‘ ] +  and s r 2 ’ ] - .  
Without pursuing the matter further here it should be clear that a treasure house 

of symmetric functions is available, generalising Schur functions and monomial sym- 
metric functions. 
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